Biomass combustion processes

INVENT – Final Meetings
Content

1. What is biomass?
2. Significance of biomass combustion
3. Classification of biomass
4. Classification of biological solid fuels
5. Combustion processes
6. Direct combustion
7. Advantages and disadvantages
8. Pyrolysis and gasification
9. Conclusion
What is biomass?

- Organic matter in trees, agricultural crops and other living plant materials
- Made up of carbohydrates – organic compounds that are formed in growing plant life
- Biomass is **solar energy** stored in organic matter
- Process of photosynthesis uses energy from the sun to convert carbon dioxide into carbohydrates (sugars, starches and cellulose)
- When plants die, the process of decay releases the energy stored in carbohydrates and discharges carbon dioxide back into the atmosphere

- Biomass is a **renewable energy source** because the growth of new plants and trees replenishes the supply
Significance of biomass combustion

- Use of biomass for energy causes no net increase in carbon dioxide emissions to the atmosphere and does not contribute to the risk of global climate change
- Growing plants remove carbon from the atmosphere through photosynthesis
- If the amount of new biomass growth balances the biomass used for energy, bioenergy is carbon dioxide “neutral”
- Globally, biomass meets about 14 percent of the world’s energy needs

- Origination process of biomass:

\[
6 \text{ CO}_2 + 6\text{H}_2\text{O} \xrightarrow{\text{+ sunlight}} \text{C}_6\text{H}_{12}\text{O}_6 + 6 \text{ O}_2
\]
Classification of biomass

- **Renewable primary products:**
 forest wood, energy crops (rape, maize, corn), biological raw materials, oil plants

- **Biological residues:**
 straw, matured forest, small dimensioned wood, loppings, abattoir refuse, blackstrap molasses, sewage sludge, landfill gas, biological part of municipal solid waste
Classification of biological solid fuels

Biological solid fuels

- Wood-like biomass
 - Residues
 - Logging remains
 - Industrial wood residual
 - Used and demolition wood
 - Energy crops
 - Fast-growing forest species

- Calm-shaped biomass
 - Residues
 - Straw
 - Energy crops
 - Corn
 - Rape
 - Sunflower
 - Maize

Sizing of biological solid fuels:
1) bulk goods (bale of straw, firewood)
2) bulk solids (straw, wood chips, wood in powder form, pellets)
Combustion processes

<table>
<thead>
<tr>
<th>Technology</th>
<th>Conversion Process Type</th>
<th>Major Biomass Feedstock</th>
<th>Energy or Fuel Produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct Combustion</td>
<td>Thermochemical</td>
<td>wood, agricultural waste, municipal solid waste, residential fuels</td>
<td>heat, steam, electricity</td>
</tr>
<tr>
<td>Gasification</td>
<td>Thermochemical</td>
<td>wood, agricultural waste, municipal solid waste</td>
<td>low or medium-Btu producer gas</td>
</tr>
<tr>
<td>Pyrolysis</td>
<td>Thermochemical</td>
<td>wood, agricultural waste, municipal solid waste</td>
<td>synthetic fuel oil (bio-crude), charcoal</td>
</tr>
<tr>
<td>Anaerobic Digestion</td>
<td>Biochemical (anaerobic)</td>
<td>animal manure, agricultural waste, landfill, wastewater</td>
<td>medium Btu gas (methane)</td>
</tr>
<tr>
<td>Ethanol Production</td>
<td>Biochemical (aerobic)</td>
<td>sugar or starch crops, wood waste, pulp sludge, grass straw</td>
<td>ethanol</td>
</tr>
<tr>
<td>Biodiesel Production</td>
<td>Chemical</td>
<td>rapeseed, soy beans, waste vegetable oil, animal fats</td>
<td>biodiesel</td>
</tr>
<tr>
<td>Methanol Production</td>
<td>Thermochemical</td>
<td>wood, agricultural waste, municipal solid waste</td>
<td>methanol</td>
</tr>
</tbody>
</table>
Direct combustion

- Combustion technologies convert biomass fuels into several forms of useful energy for commercial or industrial uses: hot air, hot water, steam and electricity

- A furnace is the simplest combustion technology:
 - biomass fuels burns in a combustion chamber
 - converting biomass into heat energy (hot gases contains 85 % of the fuel’s potential energy)
 - either direct or indirect use of heat exchanger to use the hot gases in the form of hot air or hot water
 - combustion of wood can be divided into four phases:
 1) **Drying**: water inside the wood boils off
 2) **Degasification**: gas content is freed from the wood
 3) **Gasification**: the gases emitted mix with atmospheric air and burn at a high temperature
 4) **Combustion**: the rest of the wood (mostly carbon) burns
Direct combustion

- Biomass
- Drying
- Degasification
- Burnout
- Primary air
- Secondary air
- Cooling
- Ash
- Post-combustion
Direct combustion

- **A biomass-fired boiler** is a more adaptable direct combustion technology because a boiler transfers the heat of combustion into steam
 - steam can be used for electricity, mechanical energy and heat
 - boiler’s steam output contains 60 to 85% of the potential energy in biomass fuel
 - major types of biomass combustion boilers: pile burners, stationary or travelling grate combustors, fluidized-bed combustors

Pile burners:
- consist of cells, each having an upper and a lower combustion chamber
- biomass fuel burns on a grate in the lower chamber, releasing volatile gases
- the gases burn in the upper combustion chamber
- operator must shut down pile burners periodically to remove ash
Direct combustion

- **Fluidized-bed combustors:**
 - burn biomass fuel in a hot bed of granular material, such as sand
 - injection of air into the bed creates turbulences resembling a boiling liquid
 - the turbulences distributes and suspends the fuel
 - the design of a fluidized-bed reactor increases heat transfer and allows for operating temperatures below 950 °C, reducing nitrogen oxide emissions
 - fluidized-bed combustors can handle high-ash fuels, agricultural residues and sewage sludge
Direct combustion

- **Cogeneration:**
 - using a boiler to produce **heat** and **electricity** conversion efficiency 85%
 - for comparison: electricity production from steam-driven turbine-generators 17 to 25% conversion efficiency

- **Direct-Fired Gas Turbine Technology:**
 - fuel pre-treatment reduces biomass to a particle size less than 2 mm and a moisture content of less than 25%
 - fuel is burned with compressed air turbine **electricity**

- **Co-Firing:**
 - biomass is used as **secondary fuel** e.g. in coal-burning power plants
 - could help to reduce sulphur dioxide and nitrogen oxide emissions
 - decreases net carbon dioxide emissions from the power plant (if the biomass fuel comes from a sustainable source)
Advantages and disadvantages

Advantages and disadvantages of modern firing (bulk goods vs. bulk solids)

<table>
<thead>
<tr>
<th>advantages</th>
<th>disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>firing of wood log</td>
<td></td>
</tr>
<tr>
<td>- low investment costs</td>
<td>- high operating expense</td>
</tr>
<tr>
<td>- low stock requirements for the solid fuels</td>
<td>- buffer storage to avoid light load operation</td>
</tr>
<tr>
<td>- high efficiency (up to 90 %)</td>
<td></td>
</tr>
<tr>
<td>firing of wood chips</td>
<td></td>
</tr>
<tr>
<td>- user friendly and low-maintenance</td>
<td>- higher costs of investment</td>
</tr>
<tr>
<td>- automatic provision of heat</td>
<td>- higher stock requirements for the solid fuels necessary</td>
</tr>
<tr>
<td>- very high efficiency (more than 90 %)</td>
<td></td>
</tr>
<tr>
<td>- also weak wood residuals useable</td>
<td></td>
</tr>
<tr>
<td>firing of wood pellets</td>
<td></td>
</tr>
<tr>
<td>- user friendly and low-maintenance</td>
<td>- higher costs of investment</td>
</tr>
<tr>
<td>- automatic provision of heat</td>
<td></td>
</tr>
<tr>
<td>- very high efficiency (up to 95 %)</td>
<td></td>
</tr>
<tr>
<td>- low stock requirements for the solid fuels</td>
<td></td>
</tr>
<tr>
<td>- necessary</td>
<td></td>
</tr>
</tbody>
</table>
Pyrolysis and gasification

• **Gasification of solid biological fuels:**
 - emergence of a gaseous energy sources (lean gas, burnable gas) by conversion of solid biological fuels with the influence of high temperatures
 - scission of solid biological fuels into solid and gaseous components by using heat and O_2
 - advantages: less emissions than combustion, ideal for energy recovery
 - disadvantages: lots of dust and organic compounds in the exhaust poorly properties for turbines

• **Pyrolysis: (liquefaction of solid biological fuels)**
 - conversion of the biomass with lack of O_2 and influenced by heat
 - emergence of solid, fluid and gaseous products which can use for energy recovery
 - advantages: solid biological fuels can convert into liquid energy sources which are well transportable and have a high energy density
 - currently: stage of development
Thank you for your attention!